PERFORMANSI GPH TERKOREKSI TERHADAP SKIP SAMPLING PADA PROSES LONG MEMORY DAN SPURIOUS LONG MEMORY

Main Authors: Suwardika, Gede, Kuswanto, Heri
Format: Article info application/pdf eJournal
Bahasa: eng
Terbitan: Jurnal Statistika , 2014
Online Access: http://jurnal.unimus.ac.id/index.php/statistik/article/view/1110
http://jurnal.unimus.ac.id/index.php/statistik/article/view/1110/1167
Daftar Isi:
  • Proses long memory telah diamati dalam banyak hal, seperti hidrologi, telekomunikasi, ekonomi dan keuangan. Long Memory adalah salah satu fenomena dalam time series, dimana dependensi antara kejadian masih ada dan dapat diamati untuk waktu yang lama, yang dicirikan oleh nilai difference yang tidak bulat (fractional). Parameter differencing ini biasanya diestimasi menggunakan GPH estimator. Dengan estimator ini, seringkali menghasilkan kesimpulan yang spurious untuk model-model seperti Estar, Markov switching, STOP-BREAK dan level shift. Tesis ini akan melakukan simulasi model-model tersebut dan estimasi parameter GPH terkoreksi pada proses aggregasi. Selanjutnya dilakukan pemodelan menggunakan ARFIMA dan Markov Switching pada data stock price LQ45 . Pengidentifikasian sifat Long Memory dalam suatu series data dapat dilakukan dengan aggregasi baik flow aggregation maupun stock aggregation. Dimana pada kasus ini hanya menggunakan stock aggregation. Berdasarkan hasil simulasi, stok aggregasi ini menghasilkan perilaku yang sama dalam parameternya untuk Spurious Long Memory, yaitu random, tidak memiliki trend turun atau naik jika seriesnya diaggregasi. Pemodelan dari absolut return saham dari kedua series terpilih yaitu Indosat dan Telkom, didapatkan bahwa model Markov Switching lebih baik diban-dingkan model ARFIMA. Hasil aplikasi saham menunjukkan nilai estimasi GPH untuk data teraggregasi memiliki pola yang random, dilihat dari nilai AIC terkecil berdasarkan kedua model, model ARFIMA memiliki nilai AIC terkecil, sehingga GPH standar tidak bisa digunakan untuk mendeteksi Sprurious Long Memory, dimana return saham dari kedua series adalah mengandung outlier.