APLIKASI DATA MINING MENGGUNAKAN MULTIPLE LINEAR REGRESSION UNTUK PENGENALAN POLA CURAH HUJAN

Main Authors: Budiman, Irwan, Akhlakulkarimah, Artesya Nanda
Other Authors: Ilmu Komputer, ULM, Unlam, Universitas Lambung Mangkurat
Format: Article info eJournal
Bahasa: eng
Terbitan: Lambung Mangkurat University , 2016
Online Access: http://klik.unlam.ac.id/index.php/klik/article/view/16
http://klik.unlam.ac.id/index.php/klik/article/view/16/14
ctrlnum article-16
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><title lang="en-US">APLIKASI DATA MINING MENGGUNAKAN MULTIPLE LINEAR REGRESSION UNTUK PENGENALAN POLA CURAH HUJAN</title><creator>Budiman, Irwan</creator><creator>Akhlakulkarimah, Artesya Nanda</creator><description lang="en-US">The development of information technology in today's era of globalization is growing rapidly. It also has created the development of a lot of data, including data about the weather. The method of data analysis that we used is multiple linear regression. F test, partial correlation test and coefficient of determination were used in this research. After we got a regression model with two independent variables, then we did testing for coefficient of determination. From the result, we knew that the relevance between the number of rainy days with the rainfall was very strong. The relevance between the duration of solar radiation with the rainfall was strong. Whereas, the relevance between the number of rainy days with duration of sun exposure was very strong. Coefficient of determination was 0.5778. It meant that multiple linear regression model had a reliability rate of 57,78%. The Conclusions of this research are the number of rainy days and duration of sun exposure are affecting significantly with rainfall. The regression model which used is 57,78%, it means that rainfall is influenced by 57,78% of independent variables which measured in this research. Keywords: Multiple Linear Regression, data mining, rainfall. Perkembangan teknologi informasi pada era globalisasi saat ini sangat berkembang pesat. Perkembangan ini juga telah melahirkan perkembangan banyak data, termasuk data-data tentang cuaca. Metode analisis data yang digunakan dengan multiple linear regression. Pada penelitian ini digunakan uji F, uji korelasi parsial dan koefisien determinasinya. Setelah didapatkan model regresi dengan dua variable bebas, kemudian dilakukan pengujian terhadap koefisien regresi. Dari hasil perhitungan, dapat diketahui keterkaitan antara jumlah hari hujan dengan curah hujan sangat kuat. Keterkaitan antara lama penyinaran dan curah hujan kuat. Sedangkan, keterkaitan antara jumlah hari hujan dan lama penyinaran sangat kuat. Koefisien determinasinya 0,5778. Artinya tingkat kecocokan model multiple linear regression memiliki tingkat kehandalan 57,78%. Kesimpulan dari penelitian ini adalah jumlah hari hujan dan lamanya penyinaran matahari berpengaruh signifikan terhadap curah hujan. Model regresi yang digunakan memberikan hasil 57,78% yang berarti curah hujan dipengaruhi oleh 57,78% variable bebas yang diukur pada penelitian ini. Kata Kunci: Multiple Linear Regression, data mining, curah hujan.</description><publisher lang="en-US">Lambung Mangkurat University</publisher><contributor lang="en-US">Ilmu Komputer, ULM, Unlam, Universitas Lambung Mangkurat</contributor><date>2016-04-21</date><type>Journal:Article</type><type>Other:info:eu-repo/semantics/publishedVersion</type><type>Journal:Article</type><type>Other:</type><identifier>http://klik.unlam.ac.id/index.php/klik/article/view/16</identifier><identifier>10.20527/klik.v2i1.16</identifier><source lang="en-US">KLIK - KUMPULAN JURNAL ILMU KOMPUTER; Vol 2, No 1 (2015); 34-33</source><source lang="id-ID">KLIK- KUMPULAN JURNAL ILMU KOMPUTER; Vol 2, No 1 (2015); 34-33</source><source>2443-406X</source><source>2406-7857</source><source>10.20527/klik.v2i1</source><language>eng</language><relation>http://klik.unlam.ac.id/index.php/klik/article/view/16/14</relation><rights lang="en-US">Copyright (c) 2016 KLIK - JURNAL ILMIAH ILMU KOMPUTER</rights><recordID>article-16</recordID></dc>
language eng
format Journal:Article
Journal
Other:info:eu-repo/semantics/publishedVersion
Other
Other:
Journal:eJournal
author Budiman, Irwan
Akhlakulkarimah, Artesya Nanda
author2 Ilmu Komputer, ULM, Unlam, Universitas Lambung Mangkurat
title APLIKASI DATA MINING MENGGUNAKAN MULTIPLE LINEAR REGRESSION UNTUK PENGENALAN POLA CURAH HUJAN
publisher Lambung Mangkurat University
publishDate 2016
url http://klik.unlam.ac.id/index.php/klik/article/view/16
http://klik.unlam.ac.id/index.php/klik/article/view/16/14
contents The development of information technology in today's era of globalization is growing rapidly. It also has created the development of a lot of data, including data about the weather. The method of data analysis that we used is multiple linear regression. F test, partial correlation test and coefficient of determination were used in this research. After we got a regression model with two independent variables, then we did testing for coefficient of determination. From the result, we knew that the relevance between the number of rainy days with the rainfall was very strong. The relevance between the duration of solar radiation with the rainfall was strong. Whereas, the relevance between the number of rainy days with duration of sun exposure was very strong. Coefficient of determination was 0.5778. It meant that multiple linear regression model had a reliability rate of 57,78%. The Conclusions of this research are the number of rainy days and duration of sun exposure are affecting significantly with rainfall. The regression model which used is 57,78%, it means that rainfall is influenced by 57,78% of independent variables which measured in this research. Keywords: Multiple Linear Regression, data mining, rainfall. Perkembangan teknologi informasi pada era globalisasi saat ini sangat berkembang pesat. Perkembangan ini juga telah melahirkan perkembangan banyak data, termasuk data-data tentang cuaca. Metode analisis data yang digunakan dengan multiple linear regression. Pada penelitian ini digunakan uji F, uji korelasi parsial dan koefisien determinasinya. Setelah didapatkan model regresi dengan dua variable bebas, kemudian dilakukan pengujian terhadap koefisien regresi. Dari hasil perhitungan, dapat diketahui keterkaitan antara jumlah hari hujan dengan curah hujan sangat kuat. Keterkaitan antara lama penyinaran dan curah hujan kuat. Sedangkan, keterkaitan antara jumlah hari hujan dan lama penyinaran sangat kuat. Koefisien determinasinya 0,5778. Artinya tingkat kecocokan model multiple linear regression memiliki tingkat kehandalan 57,78%. Kesimpulan dari penelitian ini adalah jumlah hari hujan dan lamanya penyinaran matahari berpengaruh signifikan terhadap curah hujan. Model regresi yang digunakan memberikan hasil 57,78% yang berarti curah hujan dipengaruhi oleh 57,78% variable bebas yang diukur pada penelitian ini. Kata Kunci: Multiple Linear Regression, data mining, curah hujan.
id IOS3976.article-16
institution Universitas Lambung Mangkurat
institution_id 161
institution_type library:university
library
library Perpustakaan Universitas Lambung Mangkurat
library_id 298
collection KLIK
repository_id 3976
subject_area Artificial Intelligence/Kecerdasan Buatan
Data Processing, Computer Science/Pemrosesan Data, Ilmu Komputer, Teknik Informatika
Decision Making Management/Manajemen Pengambilan Keputusan
Computer Communications Networks/Jaringan Komunikasi Komputer
city KOTA BANJARMASIN
province KALIMANTAN SELATAN
shared_to_ipusnas_str 1
repoId IOS3976
first_indexed 2017-03-01T14:38:13Z
last_indexed 2018-02-20T01:11:29Z
recordtype dc
_version_ 1680514092285034496
score 17.154222