Pre-research Study based on Bibliometrics, Deep Learning Research for Aspect-Based Sentiment Analysis

Main Author: Rachmawati, Rulina
Format: Article info application/pdf eJournal
Bahasa: eng
Terbitan: Department Library of Governance Institut of Home Affairs , 2022
Online Access: http://ejournal.ipdn.ac.id/IJOLIB/article/view/1835
http://ejournal.ipdn.ac.id/IJOLIB/article/view/1835/1179
Daftar Isi:
  •  Background: Massive publications on deep learning research for aspect-based sentiment analysis are challenging for interested researchers who want to research this area. Purpose: to provide an overview and comprehensive analysis on the research trend, which include the growth of publications, the most used keywords, the most popular publication sources to publish and find literature, the most cited publication, the most productive researcher, the most productive institution and country affiliation. Method: This study used a bibliometric method to analyze Scopus's indexed publications from 2014 (the year when the first publication was first indexed) to 2020. A total of 222 publications were analyzed and visualized using the VosViewer software. Result: In general, there is an increase in the number of publications from year to year. Keyword visualization shows keywords related to text-based processing, deep learning architectures, the research object and media, and the application of the method. The most popular sources to publish and to find literature are the “Lecture Notes in Computer Science” and the “Expert Systems with Applications''. The most cited publication is “Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review”, written by Do, Prasad (cited 81 times). The most productive researcher is Zhang Y from China. The most productive institution is Nanyang Technological University (6 publications), and China has the highest number of publications (76 documents). Conclusion: The bibliometric method can provide a conclusive and comprehensive preliminary overview of research trends for interested researchers who want to start research about deep learning for aspect-based sentiment analysis.   Keywords: Bibliometrics; Deep learning; Aspect-based sentiment analysis; VosViewer    Abstrak  Latar Balakang: Banyaknya publikasi mengenai penelitian deep learning untuk aspect-based sentiment analysis menjadi tantangan tersendiri bagi peneliti yang tertarik dan ingin memulai penelitian terkait topik ini. Tujuan: memberikan gambaran umum serta analisis komprehensif tren penelitian meliputi pertumbuhan jumlah publikasi, kata kunci yang banyak digunakan, sumber publikasi populer yang dapat dimanfaatkan untuk tujuan publikasi maupun menemukan literatur, publikasi utama yang paling banyak disitir, peneliti paling produktif dan pola kolaborasi peneliti, serta afiliasi institusi dan negara paling produktif. Metode: Kajian ini menggunakan metode bibliometrik untuk menganalisis publikasi terindeks Scopus dari tahun 2014 (tahun pertama kali publikasi terindeks) hingga tahun 2020. Sebanyak 222 judul publikasi dianalisis, kemudian divisualisasikan dengan software VosViewer. Hasil: Secara umum jumlah publikasi mengalami peningkatan dari tahun ke tahun. Visualisasi kata kunci menggambarkan kata kunci yang berkaitan dengan pemrosesan berbasis teks, arsitektur deep learning, obyek dan media penelitian, serta aplikasi aspect-based sentiment analysis dengan metode deep learning. Sumber publikasi terpopuler untuk tujuan publikasi dan sumber literatur utama berturut-turut adalah Lecture notes in Computer Science dan Expert Systems with Applications. Publikasi yang paling banyak disitir adalah Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review oleh Do, Prasad (disitir 81 kali). Peneliti paling produktif adalah Zhang Y dari Cina. Institusi yang paling produktif adalah Nanyang Technological University (6 publikasi), dan Cina menjadi negara paling produktif dengan jumlah publikasi sebanyak 76 dokumen. Kesimpulan: Kajian menggunakan metode bibliometrik dapat memberikan gambaran awal tren penelitian yang konklusif dan komprehensif bagi peneliti yang tertarik dan ingin memulai penelitian tentang topik deep learning untuk aspect-based sentiment analysis.   Kata kunci: Bibliometrika; Deep learning; Aspect-based sentiment analysis; VosViewer