Fast mesh denoising with data driven normal filtering using deep variational autoencoders
Main Authors: | Stavros Nousias, Gerasimos Arvanitis, Aris Lalos, Konstantinos Moustakas |
---|---|
Format: | Proceeding Journal |
Terbitan: |
, 2020
|
Online Access: |
https://zenodo.org/record/3935978 |
ctrlnum |
3935978 |
---|---|
fullrecord |
<?xml version="1.0"?>
<dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><creator>Stavros Nousias</creator><creator>Gerasimos Arvanitis</creator><creator>Aris Lalos</creator><creator>Konstantinos Moustakas</creator><date>2020-06-08</date><description>Scientific paper emerging from the research activities implemented within the framework of the EU-funded Ageing@Work project (GA number: 826299)</description><identifier>https://zenodo.org/record/3935978</identifier><identifier>10.1109/TII.2020.3000491</identifier><identifier>oai:zenodo.org:3935978</identifier><relation>info:eu-repo/grantAgreement/EC/H2020/826299/</relation><rights>info:eu-repo/semantics/openAccess</rights><rights>https://creativecommons.org/licenses/by/4.0/legalcode</rights><title>Fast mesh denoising with data driven normal filtering using deep variational autoencoders</title><type>Journal:Proceeding</type><type>Journal:Proceeding</type><recordID>3935978</recordID></dc>
|
format |
Journal:Proceeding Journal Journal:Journal |
author |
Stavros Nousias Gerasimos Arvanitis Aris Lalos Konstantinos Moustakas |
title |
Fast mesh denoising with data driven normal filtering using deep variational autoencoders |
publishDate |
2020 |
url |
https://zenodo.org/record/3935978 |
contents |
Scientific paper emerging from the research activities implemented within the framework of the EU-funded Ageing@Work project (GA number: 826299) |
id |
IOS16997.3935978 |
institution |
ZAIN Publications |
institution_id |
7213 |
institution_type |
library:special library |
library |
Cognizance Journal of Multidisciplinary Studies |
library_id |
5267 |
collection |
Cognizance Journal of Multidisciplinary Studies |
repository_id |
16997 |
subject_area |
Multidisciplinary |
city |
Stockholm |
province |
INTERNASIONAL |
shared_to_ipusnas_str |
1 |
repoId |
IOS16997 |
first_indexed |
2022-06-06T04:25:37Z |
last_indexed |
2022-06-06T04:25:37Z |
recordtype |
dc |
_version_ |
1734902017393950721 |
score |
17.610363 |