PREVENT: A Semi-Supervised Approach to Predict Software Failures in Production

Main Authors: Rahim Heydarov, Ali Mohebbi, Giovanni Denaro, Mauro Pezze
Format: Article Journal
Terbitan: , 2022
Online Access: https://zenodo.org/record/6034286
ctrlnum 6034286
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><creator>Rahim Heydarov</creator><creator>Ali Mohebbi</creator><creator>Giovanni Denaro</creator><creator>Mauro Pezze</creator><date>2022-02-03</date><description>This repository provides the replication package of our paper "PREVENT: A Semi-Supervised Approach to Predict Software Failures in Production". It includes the codes, results, inputs and train datasets.</description><identifier>https://zenodo.org/record/6034286</identifier><identifier>10.5281/zenodo.6034286</identifier><identifier>oai:zenodo.org:6034286</identifier><relation>doi:10.5281/zenodo.5959658</relation><rights>info:eu-repo/semantics/openAccess</rights><rights>https://creativecommons.org/licenses/by/4.0/legalcode</rights><title>PREVENT: A Semi-Supervised Approach to Predict Software Failures in Production</title><type>Journal:Article</type><type>Journal:Article</type><recordID>6034286</recordID></dc>
format Journal:Article
Journal
Journal:Journal
author Rahim Heydarov
Ali Mohebbi
Giovanni Denaro
Mauro Pezze
title PREVENT: A Semi-Supervised Approach to Predict Software Failures in Production
publishDate 2022
url https://zenodo.org/record/6034286
contents This repository provides the replication package of our paper "PREVENT: A Semi-Supervised Approach to Predict Software Failures in Production". It includes the codes, results, inputs and train datasets.
id IOS16997.6034286
institution ZAIN Publications
institution_id 7213
institution_type library:special
library
library Cognizance Journal of Multidisciplinary Studies
library_id 5267
collection Cognizance Journal of Multidisciplinary Studies
repository_id 16997
subject_area Multidisciplinary
city Stockholm
province INTERNASIONAL
shared_to_ipusnas_str 1
repoId IOS16997
first_indexed 2022-06-06T03:32:50Z
last_indexed 2022-06-06T03:32:50Z
recordtype dc
_version_ 1734898973687152640
score 17.610363