Implementasi algoritma in-house registrasi citra 2D/2D pada kasus kanker nasofaring = Implementation in-house algorithm image registration 2D/2D in the case of nasopharyngeal cancer / Arif Budiman

Main Author: Arif Budiman, author
Format: Bachelors
Terbitan: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia , 2014
Subjects:
Online Access: http://lib.ui.ac.id/file?file=digital/2016-5/20402142-S58654-Arif Budiman.pdf
ctrlnum 20402142
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><title>Implementasi algoritma in-house registrasi citra 2D/2D pada kasus kanker nasofaring = Implementation in-house algorithm image registration 2D/2D in the case of nasopharyngeal cancer / Arif Budiman</title><creator>Arif Budiman, author</creator><type>Thesis:Bachelors</type><place/><publisher>Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia</publisher><date>2014</date><description>&lt;b&gt;ABSTRAK&lt;/b&gt;&lt;br&gt; Telah dilakukan pengembangan sistem registrasi 2D/2D untuk verifikasi posisi pasien radioterapi berbasis bahasa C++ dengan tiga metode yaitu rigid transform, Viola-Wells mutual information dan Mattes mutual information. Implementasi sistem registrasi citra otomatis yang dikembangkan menggunakan data sekunder 34 pasien kanker nasofaring didapatkan hasil koreksi maksimum untuk rigid transform sebesar (2,79 &#xB1; 0,41) mm, Viola-Wells mutual information sebesar (2,77 &#xB1; 0,64) mm dan Mattes mutual information sebesar (2,69 &#xB1; 0,68) mm. Namun dalam proses uji validasi menggunakan fantom CIRS tidak berhasil dilakukan karena kontras citra EPID setelah melalui tahapan pre-processing tidak jauh berbeda. &lt;hr&gt; &lt;b&gt;ABSTRACT&lt;/b&gt;&lt;br&gt; Has been developed registration system 2D/2D for verifying patient&#x2019;s radiotherapy position based on C++ languages which consist of 3 registration methods such as rigid transform, Viola-Wells mutual information and Mattes mutual information. Implementation of automatic image registration system that has been developed using secondary data from 34 Nasopharyngeal Cancer patients are obtained maximum correction at about (2,79 &#xB1; 0,41) mm, (2,77 &#xB1; 0,64) mm and (2,69 &#xB1; 0,68) mm for rigid transform, Viola-Wells mutual information and Mattes mutual information, respectively. However in the validation test using CIRS phantom is not success because the image contrast of EPID after pre-processing was not significantly different.</description><subject>Radiotherapy.</subject><identifier>20402142</identifier><source>http://lib.ui.ac.id/file?file=digital/2016-5/20402142-S58654-Arif Budiman.pdf</source><recordID>20402142</recordID></dc>
format Thesis:Bachelors
Thesis
author Arif Budiman, author
title Implementasi algoritma in-house registrasi citra 2D/2D pada kasus kanker nasofaring = Implementation in-house algorithm image registration 2D/2D in the case of nasopharyngeal cancer / Arif Budiman
publisher Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia
publishDate 2014
topic Radiotherapy
url http://lib.ui.ac.id/file?file=digital/2016-5/20402142-S58654-Arif Budiman.pdf
contents <b>ABSTRAK</b><br> Telah dilakukan pengembangan sistem registrasi 2D/2D untuk verifikasi posisi pasien radioterapi berbasis bahasa C++ dengan tiga metode yaitu rigid transform, Viola-Wells mutual information dan Mattes mutual information. Implementasi sistem registrasi citra otomatis yang dikembangkan menggunakan data sekunder 34 pasien kanker nasofaring didapatkan hasil koreksi maksimum untuk rigid transform sebesar (2,79 ± 0,41) mm, Viola-Wells mutual information sebesar (2,77 ± 0,64) mm dan Mattes mutual information sebesar (2,69 ± 0,68) mm. Namun dalam proses uji validasi menggunakan fantom CIRS tidak berhasil dilakukan karena kontras citra EPID setelah melalui tahapan pre-processing tidak jauh berbeda. <hr> <b>ABSTRACT</b><br> Has been developed registration system 2D/2D for verifying patient’s radiotherapy position based on C++ languages which consist of 3 registration methods such as rigid transform, Viola-Wells mutual information and Mattes mutual information. Implementation of automatic image registration system that has been developed using secondary data from 34 Nasopharyngeal Cancer patients are obtained maximum correction at about (2,79 ± 0,41) mm, (2,77 ± 0,64) mm and (2,69 ± 0,68) mm for rigid transform, Viola-Wells mutual information and Mattes mutual information, respectively. However in the validation test using CIRS phantom is not success because the image contrast of EPID after pre-processing was not significantly different.
id IOS18064.20402142
institution Universitas Indonesia
institution_id 51
institution_type library:university
library
library Perpustakaan Universitas Indonesia
library_id 492
collection Repository Skripsi (open) Universitas Indonesia
repository_id 18064
city KOTA DEPOK
province JAWA BARAT
repoId IOS18064
first_indexed 2022-12-13T09:05:39Z
last_indexed 2022-12-13T09:05:39Z
recordtype dc
merged_child_boolean 1
_version_ 1752192329814376448
score 17.611881