Deteksi cyberbullying pada media sosial di indonesia dengan memanfaatkan text mining = Cyberbullying detection on social media in indonesia with text mining

Main Authors: Nedya Farisia, author, Add author: Yova Ruldeviyani, supervisor, Add author: Eko Kuswardono Budiardjo, supervisor, Add author: Yudho Giri Sucahyo, examiner
Format: Bachelors Thesis
Terbitan: , 2016
Subjects:
Online Access: https://lib.ui.ac.id/detail?id=20434521
Daftar Isi:
  • <b>ABSTRAK</b><br> Media sosial berkembang dengan pesat saat ini dan menyediakan kenyamanan untuk berkomunikasi. Namun kenyamanan tersebut banyak disalahgunakan untuk memperlakukan orang lain dengan tidak layak di hadapan seluruh komunitas internet yang biasa disebut cyberbullying. Apabila cyberbullying gagal dicegah, akan sulit untuk melacak dan menanganinya. Salah satu senjata utama untuk mencegah aksi cyberbullying adalah dengan melakukan deteksi pada media sosial. Deteksi cyberbullying dapat dilakukan dengan menentukan apakah suatu post menyinggung topik sensitif yang bersifat pribadi seperti ras atau tidak. Dengan menentukan kata-kata terkait topik sensitif tersebut dan filter sentimen, deteksi tweet cyberbullying dilakukan dengan menggunakan metode klasifikasi Hyperpipes, Tree-based J48, dan SVM. Hasil menunjukkan bahwa algoritma hyperpipes dan decision tree menghasilkan hasil evaluasi yang terbaik dengan tingkat akurasi 85,32% dan 86,24%. <hr> <b>ABSTRACT</b> Social media is growing rapidly at the moment and provide convenience to communicate. But such convenience widely misused to treat other people with not decent before the entire internet community commonly called cyberbullying. If cyberbullying fail to prevent, it will be difficult to track down and deal with it. One of the main weapons to prevent acts of cyberbullying is to perform detection on social media. Detection of cyberbullying can be done by determining whether a post offend the sensitive topic of a personal nature such as racist or not. By determining the related words such sensitive topics and filter sentiment, cyberbullying tweet detection is done by using the method of classification Hyperpipes, Tree-based J48, and SVM. The results show that the algorithm hyperpipes and decision tree produces the best evaluation results with the accuracy of 85.32% and 86.24%.