Barisan ultimately geometric pada Aljabar max-plus = Ultimately geometric sequences in the Max-Plus algebra
Main Authors: | Sri Syamsiah Wardhani, author, Add author: Hengki Tasman, supervisor, Add author: Djati Kerami, supervisor, Add author: Belawati H. Widjaja, examiner, Add author: Hendri Murfi, examiner |
---|---|
Format: | Masters Doctoral |
Terbitan: |
, 2011
|
Subjects: | |
Online Access: |
https://lib.ui.ac.id/detail?id=20295058 |
ctrlnum |
20295058 |
---|---|
fullrecord |
<?xml version="1.0"?>
<dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><type>Thesis:Masters</type><title>Barisan ultimately geometric pada Aljabar max-plus = Ultimately geometric sequences in the Max-Plus algebra</title><creator>Sri Syamsiah Wardhani, author</creator><creator>Add author: Hengki Tasman, supervisor</creator><creator>Add author: Djati Kerami, supervisor</creator><creator>Add author: Belawati H. Widjaja, examiner</creator><creator>Add author: Hendri Murfi, examiner</creator><publisher/><date>2011</date><subject>Max-plus algebra</subject><subject>ultimately geometric</subject><description><b>ABSTRAK</b><br>
Dalam tesis ini dibahas beberapa pengertian dasar Aljabar Max-plus serta barisan ultimately geometric. Selanjutnya dibahas hubungan antara barisan aritmetika pada aljabar biasa dengan barisan geometri pada Aljabar Max-plus. Penjumlahan dan perkalian dari beberapa barisan geometri pada Aljabar Max-plus menghasilkan barisan periodic. Dari pembahasan ini diperoleh bahwa matriks irredusibel
mempunyai nilai eigen yang bersesuaian dengan bobot rata-rata maksimum dari semua sirkuit di graf presedent. Nilai eigen dari matriks irredusibel berhubungan dengan barisan pangkat terurut matriks.
<hr>
<b>Abstract</b><br>
In this thesis, it is discussed some basic concept of Max-plus algebra and ultimately geometric sequence. Furthermore, it is discussed the relationship between the arithmetic progression in ordinary algebra with ultimately geometric sequence in the Max-plus algebra. Summation and multiplication of several geometric sequences generates a periodic sequence. From this discussion, it is obtained that irreducible matrix has eigen values corresponding to the maximum
average weight of all the circuits in the presedent graph. The eigen values of the irreducible matrix are related to the sequence of consecutive power of a matrices.</description><identifier>https://lib.ui.ac.id/detail?id=20295058</identifier><recordID>20295058</recordID></dc>
|
format |
Thesis:Masters Thesis Thesis:Doctoral |
author |
Sri Syamsiah Wardhani, author Add author: Hengki Tasman, supervisor Add author: Djati Kerami, supervisor Add author: Belawati H. Widjaja, examiner Add author: Hendri Murfi, examiner |
title |
Barisan ultimately geometric pada Aljabar max-plus = Ultimately geometric sequences in the Max-Plus algebra |
publishDate |
2011 |
topic |
Max-plus algebra ultimately geometric |
url |
https://lib.ui.ac.id/detail?id=20295058 |
contents |
<b>ABSTRAK</b><br>
Dalam tesis ini dibahas beberapa pengertian dasar Aljabar Max-plus serta barisan ultimately geometric. Selanjutnya dibahas hubungan antara barisan aritmetika pada aljabar biasa dengan barisan geometri pada Aljabar Max-plus. Penjumlahan dan perkalian dari beberapa barisan geometri pada Aljabar Max-plus menghasilkan barisan periodic. Dari pembahasan ini diperoleh bahwa matriks irredusibel
mempunyai nilai eigen yang bersesuaian dengan bobot rata-rata maksimum dari semua sirkuit di graf presedent. Nilai eigen dari matriks irredusibel berhubungan dengan barisan pangkat terurut matriks.
<hr>
<b>Abstract</b><br>
In this thesis, it is discussed some basic concept of Max-plus algebra and ultimately geometric sequence. Furthermore, it is discussed the relationship between the arithmetic progression in ordinary algebra with ultimately geometric sequence in the Max-plus algebra. Summation and multiplication of several geometric sequences generates a periodic sequence. From this discussion, it is obtained that irreducible matrix has eigen values corresponding to the maximum
average weight of all the circuits in the presedent graph. The eigen values of the irreducible matrix are related to the sequence of consecutive power of a matrices. |
id |
IOS18068.20295058 |
institution |
Universitas Indonesia |
institution_id |
51 |
institution_type |
library:university library |
library |
Perpustakaan Universitas Indonesia |
library_id |
492 |
collection |
Repository Disertasi (Membership) Universitas Indonesia |
repository_id |
18068 |
city |
KOTA DEPOK |
province |
JAWA BARAT |
repoId |
IOS18068 |
first_indexed |
2022-12-14T04:09:31Z |
last_indexed |
2022-12-14T04:09:31Z |
recordtype |
dc |
merged_child_boolean |
1 |
_version_ |
1752195846995181568 |
score |
17.610363 |