Barisan ultimately geometric pada Aljabar max-plus = Ultimately geometric sequences in the Max-Plus algebra

Main Authors: Sri Syamsiah Wardhani, author, Add author: Hengki Tasman, supervisor, Add author: Djati Kerami, supervisor, Add author: Belawati H. Widjaja, examiner, Add author: Hendri Murfi, examiner
Format: Masters Doctoral
Terbitan: , 2011
Subjects:
Online Access: https://lib.ui.ac.id/detail?id=20295058
ctrlnum 20295058
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><type>Thesis:Masters</type><title>Barisan ultimately geometric pada Aljabar max-plus = Ultimately geometric sequences in the Max-Plus algebra</title><creator>Sri Syamsiah Wardhani, author</creator><creator>Add author: Hengki Tasman, supervisor</creator><creator>Add author: Djati Kerami, supervisor</creator><creator>Add author: Belawati H. Widjaja, examiner</creator><creator>Add author: Hendri Murfi, examiner</creator><publisher/><date>2011</date><subject>Max-plus algebra</subject><subject>ultimately geometric</subject><description>&lt;b&gt;ABSTRAK&lt;/b&gt;&lt;br&gt; Dalam tesis ini dibahas beberapa pengertian dasar Aljabar Max-plus serta barisan ultimately geometric. Selanjutnya dibahas hubungan antara barisan aritmetika pada aljabar biasa dengan barisan geometri pada Aljabar Max-plus. Penjumlahan dan perkalian dari beberapa barisan geometri pada Aljabar Max-plus menghasilkan barisan periodic. Dari pembahasan ini diperoleh bahwa matriks irredusibel mempunyai nilai eigen yang bersesuaian dengan bobot rata-rata maksimum dari semua sirkuit di graf presedent. Nilai eigen dari matriks irredusibel berhubungan dengan barisan pangkat terurut matriks. &lt;hr&gt; &lt;b&gt;Abstract&lt;/b&gt;&lt;br&gt; In this thesis, it is discussed some basic concept of Max-plus algebra and ultimately geometric sequence. Furthermore, it is discussed the relationship&#xA0;between the arithmetic progression in ordinary algebra with ultimately geometric sequence in the Max-plus algebra. Summation and multiplication of several geometric sequences generates a periodic sequence. From this discussion, it is obtained that irreducible matrix has eigen values corresponding to the maximum average weight of all the circuits in the presedent graph. The eigen values of the irreducible matrix are related to the sequence of consecutive power of a matrices.</description><identifier>https://lib.ui.ac.id/detail?id=20295058</identifier><recordID>20295058</recordID></dc>
format Thesis:Masters
Thesis
Thesis:Doctoral
author Sri Syamsiah Wardhani, author
Add author: Hengki Tasman, supervisor
Add author: Djati Kerami, supervisor
Add author: Belawati H. Widjaja, examiner
Add author: Hendri Murfi, examiner
title Barisan ultimately geometric pada Aljabar max-plus = Ultimately geometric sequences in the Max-Plus algebra
publishDate 2011
topic Max-plus algebra
ultimately geometric
url https://lib.ui.ac.id/detail?id=20295058
contents <b>ABSTRAK</b><br> Dalam tesis ini dibahas beberapa pengertian dasar Aljabar Max-plus serta barisan ultimately geometric. Selanjutnya dibahas hubungan antara barisan aritmetika pada aljabar biasa dengan barisan geometri pada Aljabar Max-plus. Penjumlahan dan perkalian dari beberapa barisan geometri pada Aljabar Max-plus menghasilkan barisan periodic. Dari pembahasan ini diperoleh bahwa matriks irredusibel mempunyai nilai eigen yang bersesuaian dengan bobot rata-rata maksimum dari semua sirkuit di graf presedent. Nilai eigen dari matriks irredusibel berhubungan dengan barisan pangkat terurut matriks. <hr> <b>Abstract</b><br> In this thesis, it is discussed some basic concept of Max-plus algebra and ultimately geometric sequence. Furthermore, it is discussed the relationship between the arithmetic progression in ordinary algebra with ultimately geometric sequence in the Max-plus algebra. Summation and multiplication of several geometric sequences generates a periodic sequence. From this discussion, it is obtained that irreducible matrix has eigen values corresponding to the maximum average weight of all the circuits in the presedent graph. The eigen values of the irreducible matrix are related to the sequence of consecutive power of a matrices.
id IOS18068.20295058
institution Universitas Indonesia
institution_id 51
institution_type library:university
library
library Perpustakaan Universitas Indonesia
library_id 492
collection Repository Disertasi (Membership) Universitas Indonesia
repository_id 18068
city KOTA DEPOK
province JAWA BARAT
repoId IOS18068
first_indexed 2022-12-14T04:09:31Z
last_indexed 2022-12-14T04:09:31Z
recordtype dc
merged_child_boolean 1
_version_ 1752195846995181568
score 17.610363