Penerapan Metode Hybrid Case Based Dalam Diagnosa Gangguan Kehamilan
Main Authors: | Afif, Muhammad Ilham, Huzaeni, Huzaeni, Rizka, Muhammad |
---|---|
Format: | Article info application/pdf Journal |
Bahasa: | ind |
Terbitan: |
Politeknik Negeri Lhokseumawe
, 2024
|
Online Access: |
http://e-jurnal.pnl.ac.id/JAISE/article/view/5397 http://e-jurnal.pnl.ac.id/JAISE/article/view/5397/3846 |
ctrlnum |
article-5397 |
---|---|
fullrecord |
<?xml version="1.0"?>
<dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><title lang="id-ID">Penerapan Metode Hybrid Case Based Dalam Diagnosa Gangguan Kehamilan</title><creator>Afif, Muhammad Ilham</creator><creator>Huzaeni, Huzaeni</creator><creator>Rizka, Muhammad</creator><description lang="id-ID">Kehamilan adalah suatu proses di mana seorang wanita mengandung janin dalam rahimnya. Kurangnya pengetahuan tentang gejala-gejala yang terjadi selama kehamilan menjadi masalah yang perlu diatasi. Hasil Riset Kesehatan Dasar menunjukkan bahwa hanya sekitar 44% ibu hamil yang mengetahui tanda bahaya selama kehamilan, yang menyebabkan beberapa gejala penyakit kehamilan diabaikan dan menyebabkan risiko kematian ibu. Untuk mengatasi masalah ini, maka di bangun sebuah sistem pakar dengan menggunakan metode Hybrid Case Based yang mampu memberikan informasi dan diagnosa cepat serta tepat untuk masalah kesehatan gangguan kehamilan pada ibu hamil. Pada sistem ini terdapat 5 penyakit yang akan di diagnosa yaitu anemia, hyperemesis gravidarum, diabetes melitus gestasional, infeksi saluran kemih, dan perdarahan, serta terdapat 25 gejala. Sistem ini menerapkan rumus cosine similarity dalam mengukur similarity antara gejala penyakit yang dialami pasien dengan gejala penyakit yang ada dalam basis kasus. Berdasarkan pengujian tingkat kemiripan, antara gejala – gejala yang dialami pasien dengan basis kasus yang ada, sistem mampu mediagnosa jenis penyakit anemia dengan nilai 95%. Tingkat akurasi sistem pakar dengan total data uji sebanyak 20 didapatkan nilai akurasi sebesar 100%.Kata kunci: Gangguan Kehamilan, Diagnosa, Sistem Pakar, Hybrid Case BasedAbstractPregnancy is a process in which a woman carries a fetus in her womb. Lack of knowledge about the symptoms that occur during pregnancy is a problem that needs to be addressed. Basic Health Research results show that only about 44% of pregnant women know the danger signs during pregnancy, which causes some symptoms of pregnancy diseases to be ignored and causes the risk of maternal death. To overcome this problem, an expert system is built using the Hybrid Case Based method that is able to provide information and diagnose quickly and precisely for health problems of pregnancy disorders in pregnant women. In this system there are 5 diseases that will be diagnosed, namely anemia, hyperemesis gravidarum, gestational diabetes mellitus, urinary tract infection, and bleeding, and there are 25 symptoms. This system applies the cosine similarity formula in measuring the similarity between the symptoms of the disease experienced by the patient and the symptoms of the disease in the case base. Based on testing the level of similarity, between the symptoms experienced by the patient and the existing case base, the system is able to diagnose the type of anemia disease with a value of 95%. The accuracy of the expert system with a total of 20 test data obtained an accuracy value of 100%.Keywords: Pregnancy Disorders, Diagnosis, Expert System, Hybrid Case Based</description><publisher lang="id-ID">Politeknik Negeri Lhokseumawe</publisher><contributor lang="id-ID"/><date>2024-06-09</date><type>Journal:Article</type><type>Other:info:eu-repo/semantics/publishedVersion</type><type>Journal:Article</type><type>File:application/pdf</type><identifier>http://e-jurnal.pnl.ac.id/JAISE/article/view/5397</identifier><identifier>10.30811/jaise.v4i1.5397</identifier><source lang="en-US">Journal of Artificial Intelligence and Software Engineering; Vol 4, No 1 (2024); 1-7</source><source lang="id-ID">Journal of Artificial Intelligence and Software Engineering; Vol 4, No 1 (2024); 1-7</source><source>2777-001X</source><source>2797-054X</source><source>10.30811/jaise.v4i1</source><language>ind</language><relation>http://e-jurnal.pnl.ac.id/JAISE/article/view/5397/3846</relation><rights lang="id-ID">##submission.copyrightStatement##</rights><recordID>article-5397</recordID></dc>
|
language |
ind |
format |
Journal:Article Journal Other:info:eu-repo/semantics/publishedVersion Other File:application/pdf File Journal:Journal |
author |
Afif, Muhammad Ilham Huzaeni, Huzaeni Rizka, Muhammad |
title |
Penerapan Metode Hybrid Case Based Dalam Diagnosa Gangguan Kehamilan |
publisher |
Politeknik Negeri Lhokseumawe |
publishDate |
2024 |
url |
http://e-jurnal.pnl.ac.id/JAISE/article/view/5397 http://e-jurnal.pnl.ac.id/JAISE/article/view/5397/3846 |
contents |
Kehamilan adalah suatu proses di mana seorang wanita mengandung janin dalam rahimnya. Kurangnya pengetahuan tentang gejala-gejala yang terjadi selama kehamilan menjadi masalah yang perlu diatasi. Hasil Riset Kesehatan Dasar menunjukkan bahwa hanya sekitar 44% ibu hamil yang mengetahui tanda bahaya selama kehamilan, yang menyebabkan beberapa gejala penyakit kehamilan diabaikan dan menyebabkan risiko kematian ibu. Untuk mengatasi masalah ini, maka di bangun sebuah sistem pakar dengan menggunakan metode Hybrid Case Based yang mampu memberikan informasi dan diagnosa cepat serta tepat untuk masalah kesehatan gangguan kehamilan pada ibu hamil. Pada sistem ini terdapat 5 penyakit yang akan di diagnosa yaitu anemia, hyperemesis gravidarum, diabetes melitus gestasional, infeksi saluran kemih, dan perdarahan, serta terdapat 25 gejala. Sistem ini menerapkan rumus cosine similarity dalam mengukur similarity antara gejala penyakit yang dialami pasien dengan gejala penyakit yang ada dalam basis kasus. Berdasarkan pengujian tingkat kemiripan, antara gejala – gejala yang dialami pasien dengan basis kasus yang ada, sistem mampu mediagnosa jenis penyakit anemia dengan nilai 95%. Tingkat akurasi sistem pakar dengan total data uji sebanyak 20 didapatkan nilai akurasi sebesar 100%.Kata kunci: Gangguan Kehamilan, Diagnosa, Sistem Pakar, Hybrid Case BasedAbstractPregnancy is a process in which a woman carries a fetus in her womb. Lack of knowledge about the symptoms that occur during pregnancy is a problem that needs to be addressed. Basic Health Research results show that only about 44% of pregnant women know the danger signs during pregnancy, which causes some symptoms of pregnancy diseases to be ignored and causes the risk of maternal death. To overcome this problem, an expert system is built using the Hybrid Case Based method that is able to provide information and diagnose quickly and precisely for health problems of pregnancy disorders in pregnant women. In this system there are 5 diseases that will be diagnosed, namely anemia, hyperemesis gravidarum, gestational diabetes mellitus, urinary tract infection, and bleeding, and there are 25 symptoms. This system applies the cosine similarity formula in measuring the similarity between the symptoms of the disease experienced by the patient and the symptoms of the disease in the case base. Based on testing the level of similarity, between the symptoms experienced by the patient and the existing case base, the system is able to diagnose the type of anemia disease with a value of 95%. The accuracy of the expert system with a total of 20 test data obtained an accuracy value of 100%.Keywords: Pregnancy Disorders, Diagnosis, Expert System, Hybrid Case Based |
id |
IOS19478.article-5397 |
institution |
Politeknik Negeri Lhokseumawe |
institution_id |
2014 |
institution_type |
library:university library |
library |
Perpustakaan Politeknik Negeri Lhokseumawe |
library_id |
1629 |
collection |
Journal of Artificial Intelligence and Software Engineering (J-AISE) |
repository_id |
19478 |
subject_area |
SOFTWARE - NETWORK ARTIFICIAL INTELLIGENCE ROBOTICS ALGORITHMS |
city |
KOTA LHOKSEUMAWE |
province |
ACEH |
repoId |
IOS19478 |
first_indexed |
2024-06-13T04:34:51Z |
last_indexed |
2024-06-13T04:34:51Z |
recordtype |
dc |
_version_ |
1801719508614774784 |
score |
9.9049015 |