Peramalan Penjualan Produk Dengan Metode Regresi Linear Dan Aplikasi POM-QM di PT XYZ

Main Authors: Prakoso, Ilyas Aji, Kusnadi, Kusnadi, Nugraha, Billy
Other Authors: Perusahaan PT. XYZ, Universitas Singaperbangsa Karawang
Format: Article info application/pdf eJournal
Bahasa: eng
Terbitan: Widya Teknik , 2021
Subjects:
Online Access: http://journal.wima.ac.id/index.php/teknik/article/view/3158
http://journal.wima.ac.id/index.php/teknik/article/view/3158/pdf
ctrlnum article-3158
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><title lang="en-US">Peramalan Penjualan Produk Dengan Metode Regresi Linear Dan Aplikasi POM-QM di PT XYZ</title><creator>Prakoso, Ilyas Aji</creator><creator>Kusnadi, Kusnadi</creator><creator>Nugraha, Billy</creator><subject lang="en-US">Forecasting, Sales, Linear Regression</subject><description lang="en-US">Forecasting is a method for estimating a value in the future or the future using past data. For forecasting in this study conducted at PT. XYZ, where this company produces fertilizers and sells it in the city and out of town, in this research the researchers discuss forecasting product sales using the exponential smoothing method and also the linear regression method and re-accurate using the POM-QM application or software. The use of these 2 forecasting methods is to obtain forecasting results that have the smallest MSE value, and in this study the data were taken from the company PT. This XYZ is data in 2019</description><publisher lang="en-US">Widya Teknik</publisher><contributor lang="en-US">Perusahaan PT. XYZ, Universitas Singaperbangsa Karawang</contributor><date>2021-07-19</date><type>Journal:Article</type><type>Other:info:eu-repo/semantics/publishedVersion</type><type>Other:</type><type>File:application/pdf</type><identifier>http://journal.wima.ac.id/index.php/teknik/article/view/3158</identifier><identifier>10.33508/wt.v20i1.3158</identifier><source lang="en-US">Widya Teknik; Vol 20, No 1 (2021): May; 17-20</source><source>2621-3362</source><source>1412-7350</source><source>10.33508/wt.v20i1</source><language>eng</language><relation>http://journal.wima.ac.id/index.php/teknik/article/view/3158/pdf</relation><rights lang="en-US">Copyright (c) 2021 Ilyas Aji Prakoso, Kusnadi ., Billy Nugraha</rights><rights lang="en-US">https://creativecommons.org/licenses/by-nc-sa/4.0</rights><recordID>article-3158</recordID></dc>
language eng
format Journal:Article
Journal
Other:info:eu-repo/semantics/publishedVersion
Other
Other:
File:application/pdf
File
Journal:eJournal
author Prakoso, Ilyas Aji
Kusnadi, Kusnadi
Nugraha, Billy
author2 Perusahaan PT. XYZ, Universitas Singaperbangsa Karawang
title Peramalan Penjualan Produk Dengan Metode Regresi Linear Dan Aplikasi POM-QM di PT XYZ
publisher Widya Teknik
publishDate 2021
topic Forecasting
Sales
Linear Regression
url http://journal.wima.ac.id/index.php/teknik/article/view/3158
http://journal.wima.ac.id/index.php/teknik/article/view/3158/pdf
contents Forecasting is a method for estimating a value in the future or the future using past data. For forecasting in this study conducted at PT. XYZ, where this company produces fertilizers and sells it in the city and out of town, in this research the researchers discuss forecasting product sales using the exponential smoothing method and also the linear regression method and re-accurate using the POM-QM application or software. The use of these 2 forecasting methods is to obtain forecasting results that have the smallest MSE value, and in this study the data were taken from the company PT. This XYZ is data in 2019
id IOS2662.article-3158
institution Universitas Katolik Widya Mandala Surabaya
institution_id 50
institution_type library:university
library
library Perpustakaan Universitas Katolik Widya Mandala Surabaya
library_id 525
collection Widya Teknik
repository_id 2662
city KOTA SURABAYA
province JAWA TIMUR
repoId IOS2662
first_indexed 2023-07-13T08:01:16Z
last_indexed 2023-07-13T08:01:16Z
recordtype dc
_version_ 1771292288002031616
score 17.610468