ctrlnum 49044
fullrecord <?xml version="1.0"?> <dc schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"><relation>http://repository.upi.edu/49044/</relation><title>RANCANG BANGUN ADAPTIVE MOBILE LEARNING BERDASARKAN MODEL GAYA BELAJAR FELDER SILVERMAN</title><creator>Fakhri Abdullah, -</creator><subject>L Education (General)</subject><subject>QA76 Computer software</subject><description>Setiap orang mempunyai gaya belajar yang berbeda-beda. Pembelajaran yang sesuai dengan gaya belajar sangat penting untuk proses pembelajaran. Penerapan elearning dianggap kurang efektif dalam waktu dan tempat, karena masih terbatas oleh penggunaan komputer PC atau laptop. Berbeda dengan menggunakan perangkat smartphone penggunaannya bisa diakses kapan saja dan dimana saja dengan mudah. Selain itu, hampir semua siswa sudah mempunyai smartphone maka penerapan media pembelajaran berbasis smartphone lebih mudah diterapkan. Untuk memenuhi itu maka dibuatlah sebuah sistem adaptive mobile learning berbasis Android yang bisa memberikan konten pembelajaran sesuai dengan gaya belajarnya. Proses adaptif dilakukan dengan cara mendeteksi gaya belajar pada siswa dengan metode Litteratur-based kemudian memberikan rekomendasi konten belajar dengan menggunakan metode item bases collaborative filtering. Dari penelitian ini mendapatkan hasil 1) aplikasi adaptive mobile learning mendapatkan penilaian sangat baik dari siswa dengan rata-rata nilai 83,9%. 2) Adaptive mobile learning dapat meningkatkan kemampuan peserta didik yang diukur dari kenaikan nilai tes pre-test dan post-test. Rata-rata nilai pre-test yang didapatkan siswa adalah 37,44 dan rata-rata nilai post-test 76,67. Peningkatan tersebut memiliki rata-rata gain sebesar 0,63 yang termasuk dalam kategori sedang. 3) Pendeteksian gaya belajar dengan metode literatur-based yang peneliti gunakan mendapatkan hasil yang cukup baik, dengan dimensi pemrosesan (active/reflective) bernilai 67,31%, dimensi persepsi (sensing/intuitive) bernilai 71,15%, dimensi input (visual/verbal) bernilai 75%.----------Each person has different learning style or method. A suitable and easy adaptive learning is very important for learning process. The application of e-learning is considered less effective in time and place, because it is still limited by the use of PC or laptop computers. Unlike using a smartphone device its use can be accessed anytime and anywhere easily. In addition, almost all students have smartphones that implement smartphone-based learning media that are easier to implement. To fulfil a successful learning process, there are adaptive mobile learning based on Android system, which can deliver a suitable learning content according to every user&#x2019;s learning style. Adaptive process runs by detection and determined user&#x2019;s learning style with Literature-based method, and then create some learning content recommendation using item bases collaborative filtering method. This research creates some result such as 1) Adaptive mobile learning application got excellent assessment from student with average score in 83,9%. 2) Adaptive mobile learning has increase student&#x2019;s ability, based on the increase of student&#x2019;s score comparing pre-test and post-test. The average student&#x2019;s pre-test score is 37,44, while the average of student&#x2019;s post-test score is 76,67. The increase have average gain in the amount of 0,63 which belong to medium rate category. 3) Learning style detection with literature-based method which is being used in this research, produce a good result, it is proved by the processing dimension (active/reflective) value in the amount of 67,31%, perception dimension value (sensing/intuitive) in the amount of 71,15%, and input dimension (visual/verbal) in the amount of 75%.</description><date>2019-02-14</date><type>Thesis:Bachelors</type><type>PeerReview:NonPeerReviewed</type><type>Book:Book</type><language>eng</language><identifier>http://repository.upi.edu/49044/1/S_KOM_1400793_Title.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.upi.edu/49044/2/S_KOM_1400793_Abstract.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.upi.edu/49044/3/S_KOM_1400793_Table_of_Content.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.upi.edu/49044/4/S_KOM_1400793_Chapter1.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.upi.edu/49044/5/S_KOM_1400793_Chapter2.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.upi.edu/49044/6/S_KOM_1400793_Chapter3.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.upi.edu/49044/7/S_KOM_1400793_Chapter4.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.upi.edu/49044/8/S_KOM_1400793_Chapter5.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.upi.edu/49044/9/S_KOM_1400793_Bibliography.pdf</identifier><type>Book:Book</type><language>eng</language><identifier>http://repository.upi.edu/49044/10/S_KOM_1400793_Appendix.pdf</identifier><identifier> Fakhri Abdullah, - (2019) RANCANG BANGUN ADAPTIVE MOBILE LEARNING BERDASARKAN MODEL GAYA BELAJAR FELDER SILVERMAN. S1 thesis, Universitas Pendidikan Indonesia. </identifier><relation>http://repository.upi.edu</relation><recordID>49044</recordID></dc>
language eng
format Thesis:Bachelors
Thesis
PeerReview:NonPeerReviewed
PeerReview
Book:Book
Book
author Fakhri Abdullah, -
title RANCANG BANGUN ADAPTIVE MOBILE LEARNING BERDASARKAN MODEL GAYA BELAJAR FELDER SILVERMAN
publishDate 2019
topic L Education (General)
QA76 Computer software
url http://repository.upi.edu/49044/1/S_KOM_1400793_Title.pdf
http://repository.upi.edu/49044/2/S_KOM_1400793_Abstract.pdf
http://repository.upi.edu/49044/3/S_KOM_1400793_Table_of_Content.pdf
http://repository.upi.edu/49044/4/S_KOM_1400793_Chapter1.pdf
http://repository.upi.edu/49044/5/S_KOM_1400793_Chapter2.pdf
http://repository.upi.edu/49044/6/S_KOM_1400793_Chapter3.pdf
http://repository.upi.edu/49044/7/S_KOM_1400793_Chapter4.pdf
http://repository.upi.edu/49044/8/S_KOM_1400793_Chapter5.pdf
http://repository.upi.edu/49044/9/S_KOM_1400793_Bibliography.pdf
http://repository.upi.edu/49044/10/S_KOM_1400793_Appendix.pdf
http://repository.upi.edu/49044/
http://repository.upi.edu
contents Setiap orang mempunyai gaya belajar yang berbeda-beda. Pembelajaran yang sesuai dengan gaya belajar sangat penting untuk proses pembelajaran. Penerapan elearning dianggap kurang efektif dalam waktu dan tempat, karena masih terbatas oleh penggunaan komputer PC atau laptop. Berbeda dengan menggunakan perangkat smartphone penggunaannya bisa diakses kapan saja dan dimana saja dengan mudah. Selain itu, hampir semua siswa sudah mempunyai smartphone maka penerapan media pembelajaran berbasis smartphone lebih mudah diterapkan. Untuk memenuhi itu maka dibuatlah sebuah sistem adaptive mobile learning berbasis Android yang bisa memberikan konten pembelajaran sesuai dengan gaya belajarnya. Proses adaptif dilakukan dengan cara mendeteksi gaya belajar pada siswa dengan metode Litteratur-based kemudian memberikan rekomendasi konten belajar dengan menggunakan metode item bases collaborative filtering. Dari penelitian ini mendapatkan hasil 1) aplikasi adaptive mobile learning mendapatkan penilaian sangat baik dari siswa dengan rata-rata nilai 83,9%. 2) Adaptive mobile learning dapat meningkatkan kemampuan peserta didik yang diukur dari kenaikan nilai tes pre-test dan post-test. Rata-rata nilai pre-test yang didapatkan siswa adalah 37,44 dan rata-rata nilai post-test 76,67. Peningkatan tersebut memiliki rata-rata gain sebesar 0,63 yang termasuk dalam kategori sedang. 3) Pendeteksian gaya belajar dengan metode literatur-based yang peneliti gunakan mendapatkan hasil yang cukup baik, dengan dimensi pemrosesan (active/reflective) bernilai 67,31%, dimensi persepsi (sensing/intuitive) bernilai 71,15%, dimensi input (visual/verbal) bernilai 75%.----------Each person has different learning style or method. A suitable and easy adaptive learning is very important for learning process. The application of e-learning is considered less effective in time and place, because it is still limited by the use of PC or laptop computers. Unlike using a smartphone device its use can be accessed anytime and anywhere easily. In addition, almost all students have smartphones that implement smartphone-based learning media that are easier to implement. To fulfil a successful learning process, there are adaptive mobile learning based on Android system, which can deliver a suitable learning content according to every user’s learning style. Adaptive process runs by detection and determined user’s learning style with Literature-based method, and then create some learning content recommendation using item bases collaborative filtering method. This research creates some result such as 1) Adaptive mobile learning application got excellent assessment from student with average score in 83,9%. 2) Adaptive mobile learning has increase student’s ability, based on the increase of student’s score comparing pre-test and post-test. The average student’s pre-test score is 37,44, while the average of student’s post-test score is 76,67. The increase have average gain in the amount of 0,63 which belong to medium rate category. 3) Learning style detection with literature-based method which is being used in this research, produce a good result, it is proved by the processing dimension (active/reflective) value in the amount of 67,31%, perception dimension value (sensing/intuitive) in the amount of 71,15%, and input dimension (visual/verbal) in the amount of 75%.
id IOS2897.49044
institution Universitas Pendidikan Indonesia
institution_id 44
institution_type library:university
library
library Perpustakaan Universitas Pendidikan Indonesia
library_id 581
collection UPI Institutional repository
repository_id 2897
subject_area Pendidikan
city BANDUNG
province JAWA BARAT
repoId IOS2897
first_indexed 2020-06-12T19:37:48Z
last_indexed 2020-06-12T19:37:48Z
recordtype dc
_version_ 1685881769462595584
score 17.610468